The Wiki for Tale 4 is in read-only mode and is available for archival and reference purposes only. Please visit the current Tale 11 Wiki in the meantime.

If you have any issues with this Wiki, please post in #wiki-editing on Discord or contact Brad in-game.

Difference between revisions of "Alloys"

From A Tale in the Desert
Jump to navigationJump to search
m
 
(126 intermediate revisions by 37 users not shown)
Line 1: Line 1:
(Note: can we link these pages on the Guides page or somewhere?  A lot of these guide type pages are springing up with no links from anywhereI took care of this one myself. -- Ouij)
+
==Overview==
 +
Alloys are created from various smelted metals in a [[Reactory]]The process of producing alloys is quite different compared to previous tellings.
  
 +
To initially start a batch of an alloy takes 5 [[Charcoal]], the metals, and 1 Tree Resin. The type of resin needed depends on the type of alloy you are making.  After working the batch of alloy until it crystalizes, you can take the amount of alloy made, or you can Re-Heat the batch. You often want to re-heat the batch if the amount of alloy made is not satisfactory. Re-heating the batch costs 3 [[Charcoal]] and 1 resin more.
  
==Alloys==
+
==Alloy Types and Costs==
  
The process of producing alloys is quite different compared to previous tellings.
+
If you update this list, please also update the table on the [[Reactory]] page.
  
'''[[Brass]]'''
+
====Advanced Metallurgy (1)====
:7 [[Copper]], 1 [[Tin]], 1 [[Resin]]:Stout Palm, 5 [[Charcoal]]
+
'''[[Brass]]''' (100% = 8)
'''[[Bronze]]'''
+
:7 [[Copper]], 1 [[Tin]], 1 [[Resin]]:[[Stout Palm]], 5 [[Charcoal]]
:7 [[Copper]], 1 [[Zinc]], 1 [[Resin]]:Fern Palm, 5 [[Charcoal]]
+
'''[[Bronze]]''' (100% = 8)
'''[[Pewter]]'''
+
:7 [[Copper]], 1 [[Zinc]], 1 [[Resin]]:[[Fern Palm]], 5 [[Charcoal]]
:7 [[Iron]], 4 [[Antimony]], 1 [[Brass]], 1 [[Resin]]:Royal Palm, 5 [[Charcoal]]
+
'''[[Pewter]]''' (100% = 12)
'''[[Steel]]'''
+
:7 [[Iron]], 4 [[Antimony]], 1 [[Brass]], 1 [[Resin]]:[[Royal Palm]], 5 [[Charcoal]]
:7 [[Iron]], 1 [[Tin]], 1 [[Resin]]:Towering Palm, 5 [[Charcoal]]
+
'''[[Steel]]''' (100% = 8)
 +
:7 [[Iron]], 1 [[Tin]], 1 [[Resin]]:[[Towering Palm]], 5 [[Charcoal]]
 +
====Advanced Metallurgy (2)====
 +
'''[[Moon Steel]]''' (100% = 13)
 +
:7 [[Steel]], 3 [[Brass]], 3 [[Pewter]], 1 [[Resin]]:[[Hawthorn]], 5 [[Charcoal]]
 +
'''[[Sun Steel]]''' (100% = 13)
 +
:7 [[Steel]], 3 [[Brass]], 3 [[Bronze]], 1 [[Resin]]:[[Umbrella Palm]], 5 [[Charcoal]]
 +
====Advanced Metallurgy (3)====
 +
'''[[Thoth's Metal]]''' (100% = 15)
 +
:7 [[Steel]], 4 [[Moon Steel]], 4 [[Sun Steel]], 1 [[Resin]]:[[Folded Birch]], 5 [[Charcoal]]
 +
'''[[Water Metal]]''' (100% = 14)
 +
:7 [[Steel]], 4 [[Moon Steel]], 3 [[Silver]], 1 [[Resin]]:[[Pratyeka Tree]], 5 [[Charcoal]]
 +
====Advanced Metallurgy (4)====
 +
'''[[Metal Blue]]''' (100% = 21)
 +
:7 [[Steel]], 5 [[Thoth's Metal]], 5 [[Water Metal]], 4 [[Tungsten]], 1 [[Resin]]:[[Cerulean Blue]], 5 [[Charcoal]]
  
 +
====Advanced Metallurgy (5)====
 +
'''[[Octec's Alloy]]''' (100% = '''21''')
 +
:7 [[Steel]], 5 [[Thoth's Metal]], 5 [[Water Metal]], 4 [[Tungsten]], 1 [[Resin]]:[[Oil Palm]], 5 [[Charcoal]]
 +
::* Cannot reheat.  The batch must be abandoned using the Utility menu.
  
 +
==Mechanism==
  
 +
The rules governing the behavior of the Reactory are as follows (more detail and historical information can be found in the [[Talk:Alloys|discussion page]]):
  
'''Snippet of the short discussion on E! just after the release of the tech:'''
+
*We define the active circle as the circle that has its center nearest your mouse click, that circle will not move (no matter if you click in overlaps or not).
  
'''Coyan:''' this is what I have figured out so far once it goes through its 15 second cycle there are a number of light grey circles in the black pool  you get 1 or 2 clicks, or you are timed, not sure yet  the circles seem to move towards your mouse click  the more of those that get to your mouse, the higher the crystalization  at 37% crystalization with steel, I got 1 steel with 67% crystalization with brass, I got 6 brass  at 25% and lower, 0 of both
+
*Circles overlapping with the active circle will move towards it like magnets, the nearer they are, the more they will move.
  
'''Marcus:''' It seems to be quite complicated, and i believe there is a randomness factor in it.
+
*If the click results in 2 or more circles congealing completely, the batch crystalizes.  The crystalization percentage depends on the number of circles that congeal with the last active circle.  So your last click is important: don't just click in the middle of the bright white blob, but try to attract the max number of circles with that last click.
  
'''Daniels:''' how many reactories can you run at once?  I mean, are the clicking cycles fast orslow?
+
*Estimate of when 2 circles congeal after a click: if a circle has center to center distance to active circle of less than half the circle radius, they will congeal and crystallization will be the result.
'''Voyna:''' fast
 
  
'''Marcus:''' reactories are not timed based im almost poastive unless its a time per click
+
==Output==
  
'''Marcus:''' New possability, you have to keep clicking in places where it would keep the circles apart?
+
A batch's percentage of crystallization is calculated as follows:
'''Marcus:''' because when i bring the circles together i get nothing but shit yeilds
+
Crystallization = (N - 1) / (T - 1)
 +
 +
    N = number of circles perfectly overlapping after crystallization
 +
    T = total number of circles
 +
This number is shown as an integer, but likely keeps any fractional part for the purposes of calculating the output.
  
'''MouseD:''' I just got 33% gave me 1 brass the tighter the cricles together seems to be it ...mine shows like a almost full color white circle now
+
Output is calculated as follows:
 +
Output (debens) =  M * (X - F) / (100% - F)
 +
 +
    M = Total debens of metals put into the batch
 +
    X = Crystallization percentage of the batch
 +
    F = Floor crystallization percentage
 +
The floor percentage is different for each metal, and its calculation method is unclear, but it appears to be determinable as the highest crystallization percentage at which no output is received (example, F=25% for [[steel]], and F=33% for [[pewter]]).
  
'''Kyline:''' how do you know how much metal to put in?
+
Put plainly, the output is exactly 0 at or below the floor crystallization, equal to the sum of the input metals at 100% crystallization, and scales linearly between the two points.
'''MouseD:''' when you start it up it tells you how much metals you need for each alloy your making
 
  
'''MouseD:''' http://www.atitd.org/wiki/tale4/Image:Brass.JPG
+
Note that because fractions are kept internally, a larger batch from an upgraded Reactory will not necessarily produce an exact multiple of the output from a normal-sized batch at the same crystallization.
  
'''Zaniac:''' wow that means ALOT of time on reactorys now to make the amounts we use cause no doubt teppy didnt lower HOW much we need Just HOW we make it
+
==Guides==
  
'''MouseD:''' well coyan got 6 brass of one of his loads now
+
Here is a quick do and do not guide by wyked [[alloyyesandno | avoiding crystalization]]
  
'''MouseD:''' seems the higher the % is the more you will get but its time consuming for usre much worse then last tale with doping at 8 hr mark now
+
Here is a beginner's guide to practical alloys by [[User:Daniels|Daniels]]: [[User:Daniels\AlloyGuide|Practical Beginning Alloys]]
  
 
+
Here is a youtube video guide for alloy by [[User:Daniels|Daniels]]: [http://www.youtube.com/watch?v=3U7Q6DaMyNI Video Guide]
'''Ive been able to get 75% crystalization with steel (5) by clicking once off and then once on.. there has to be some pattern to it, I don't think its time based somehow I get the feeling that each alloy will have different method, but we will see. Haven't had much luck with brass.
 
 
 
'''update 1:''' Okay it looks like definitely not timed based. I think the general idea is you have to get the circles as close together before they overlap and become too "white" thus crystalizing and ending the game. So I think the idea is to manipulate the circles in such a way that they all come together with one click into a large white spot though how clicking moves the circles I'm still working on.
 
 
 
'''update 2:''' (Turkeybone) So Summit and I have been continuing research -- it seems like its important to get them all together on the final hit, and to hit the largest white crystal/area on that final hit. Also it seems very apparent that there is a luck factor, based on the starting points of the circles.
 
 
 
'''update 3:''' (Kyline) So I had a go at this and it seems its much like woodtreatment in that the closer a circle is to your point of click the faster (further) it will travel toward it
 
 
 
 
 
''' It appears that the maximum amount of Steel obtainable from a reactory run is 8, as seen in the pic below.
 
[[Image:IdealSteel.jpg]]
 

Latest revision as of 00:21, 16 February 2010

Overview

Alloys are created from various smelted metals in a Reactory. The process of producing alloys is quite different compared to previous tellings.

To initially start a batch of an alloy takes 5 Charcoal, the metals, and 1 Tree Resin. The type of resin needed depends on the type of alloy you are making. After working the batch of alloy until it crystalizes, you can take the amount of alloy made, or you can Re-Heat the batch. You often want to re-heat the batch if the amount of alloy made is not satisfactory. Re-heating the batch costs 3 Charcoal and 1 resin more.

Alloy Types and Costs

If you update this list, please also update the table on the Reactory page.

Advanced Metallurgy (1)

Brass (100% = 8)

7 Copper, 1 Tin, 1 Resin:Stout Palm, 5 Charcoal

Bronze (100% = 8)

7 Copper, 1 Zinc, 1 Resin:Fern Palm, 5 Charcoal

Pewter (100% = 12)

7 Iron, 4 Antimony, 1 Brass, 1 Resin:Royal Palm, 5 Charcoal

Steel (100% = 8)

7 Iron, 1 Tin, 1 Resin:Towering Palm, 5 Charcoal

Advanced Metallurgy (2)

Moon Steel (100% = 13)

7 Steel, 3 Brass, 3 Pewter, 1 Resin:Hawthorn, 5 Charcoal

Sun Steel (100% = 13)

7 Steel, 3 Brass, 3 Bronze, 1 Resin:Umbrella Palm, 5 Charcoal

Advanced Metallurgy (3)

Thoth's Metal (100% = 15)

7 Steel, 4 Moon Steel, 4 Sun Steel, 1 Resin:Folded Birch, 5 Charcoal

Water Metal (100% = 14)

7 Steel, 4 Moon Steel, 3 Silver, 1 Resin:Pratyeka Tree, 5 Charcoal

Advanced Metallurgy (4)

Metal Blue (100% = 21)

7 Steel, 5 Thoth's Metal, 5 Water Metal, 4 Tungsten, 1 Resin:Cerulean Blue, 5 Charcoal

Advanced Metallurgy (5)

Octec's Alloy (100% = 21)

7 Steel, 5 Thoth's Metal, 5 Water Metal, 4 Tungsten, 1 Resin:Oil Palm, 5 Charcoal
  • Cannot reheat. The batch must be abandoned using the Utility menu.

Mechanism

The rules governing the behavior of the Reactory are as follows (more detail and historical information can be found in the discussion page):

  • We define the active circle as the circle that has its center nearest your mouse click, that circle will not move (no matter if you click in overlaps or not).
  • Circles overlapping with the active circle will move towards it like magnets, the nearer they are, the more they will move.
  • If the click results in 2 or more circles congealing completely, the batch crystalizes. The crystalization percentage depends on the number of circles that congeal with the last active circle. So your last click is important: don't just click in the middle of the bright white blob, but try to attract the max number of circles with that last click.
  • Estimate of when 2 circles congeal after a click: if a circle has center to center distance to active circle of less than half the circle radius, they will congeal and crystallization will be the result.

Output

A batch's percentage of crystallization is calculated as follows:

Crystallization = (N - 1) / (T - 1)

   N = number of circles perfectly overlapping after crystallization
   T = total number of circles

This number is shown as an integer, but likely keeps any fractional part for the purposes of calculating the output.

Output is calculated as follows:

Output (debens) =  M * (X - F) / (100% - F)

   M = Total debens of metals put into the batch
   X = Crystallization percentage of the batch
   F = Floor crystallization percentage

The floor percentage is different for each metal, and its calculation method is unclear, but it appears to be determinable as the highest crystallization percentage at which no output is received (example, F=25% for steel, and F=33% for pewter).

Put plainly, the output is exactly 0 at or below the floor crystallization, equal to the sum of the input metals at 100% crystallization, and scales linearly between the two points.

Note that because fractions are kept internally, a larger batch from an upgraded Reactory will not necessarily produce an exact multiple of the output from a normal-sized batch at the same crystallization.

Guides

Here is a quick do and do not guide by wyked avoiding crystalization

Here is a beginner's guide to practical alloys by Daniels: Practical Beginning Alloys

Here is a youtube video guide for alloy by Daniels: Video Guide